

Braga - Portugal 24th - 28th May 2010

PT Tier 2 Readiness

IBERGRID Conference

G.Barreira, G.Borges, M.David, N.Dias, H.Gomes, J.Gomes, J.Martins, M.Oliveira

Introduction

The Portuguese WLCG Tier-2 is an association of 3 different sites

- LIP-LISBON and LIP-COIMBRA
 - **Laboratory for Instrumentation and Experimental Particle Physics**
 - Two branches of the same institution
 - Researchers deeply involved in CMS and ATLAS detectors construction
 - The same degree of commitment is now addressed to preparing, building and maintaining the local LHC computing grid infrastructure

► NCG-INGRID-PT

- INGRID main node for grid computing
- Contribution of the Portuguese Grid Initiative for the fulfillment of the Portuguese responsibilities assumed for the WLCG MoU

All 3 sites are operated by the same LIP team

Computing

PT T2 ATLAS and CMS Topology

T2 Commitments

Computing and Storage pledges

- ► CMS
 - **200 TB / 3200 HEPSPEC06**
- ATLAS
 - **231 TB / 3200 HEPSPEC06**
 - ATLAS committed 31 TB from its Tier-3 to be used by the Tier-2
- Presently well above the initial commitments
 - Dynamic resources which will be taken by PT NGI in a near future

Table 1. ATLAS and CMS storage and computing pledges for the PT Tier-2									
Storage (TB)	LIP-Lisbon	LIP-Coimbra	NCG-INGRID-PT	Total					
CMS T2	75.	-	125.	200.					
ATLAS T2	67.	67.	97	231.					
				I					
CPU (HEPSPEC06 [8])	LIP-Lisbon	LIP-Coimbra	NCG-INGRID-PT	Total					
CMS T2	469	-	2731	3200					
ATLAS T2	950	950	1300	3200					
	•	•							

Infrastructure: Virtualization (I)

Solution based on Xen Virtual machines

- Encapsulation
- Multiple environments and flavors
- Flexible framework for persistent VMs enabling resilient service provisioning
- Testing Testbeds

To host gLite and other basic services

- **DNS, Web Servers, Monitoring tools (Nagios, Ganglia, ...)**
- Local Grid Services
 - CEs, BDIIs, MONBOX, UIs ...
- Core Grid Services
 - **PX Servers, VOMS Servers, LFCs, WMSs, TOP-BDIIs, ...**

Infrastructure: Virtualization (II)

Redundant services distributed between 2 blade centres

- Xen images available Storage accessible via Internet SCSI (iSCSI)
- Controlled by OCFS2 shared cluster file system...

- The core network equipment at all sites has been replaced by nonblocking layer 2 / layer 3 switches
 - All ports can operate simultaneously at higher speed without packet loss
- **The local networks have been divided in different VLANS**
 - Separates local traffic from grid traffic
 - Scalability, security, easier management
- WLAN links
 - **L2 connectivity between the 3 resource centers** *@* **10 Gbps**
 - Geant connectivity 3 Gbps for the whole cloud

Infrastructure: Networking (II)

Infrastructure: Networking (III)

Tier-2 resources topology

StoRM using Lustre as the underlying filesystem

- **Lustre is a High Performance filesystem mostly used in HPC**
 - Creation of POSIX filesystems across multiple servers
 - A file can stored only in one server or stripped across several
- **StoRM decouples the SRM services from the filesystem itself**
 - Lustre filesystem can be mounted in any (non-grid) Linux box, as long as the appropriate kernel modules are loaded
 - The filesystem "IS" the data catalogue

Infrastructure: Storage (II)

Infrastructure: Computing (I)

One single FARM at each site

- Better optimization and management
- Tried and used several LRMS
 - Torque+Maui (LIP-Coimbra), SGE (LIP-Coimbra / NCG)
- Heterogeneous (blade, servers,...)
 - Hardware (AMD, Intel, several generations, ...)
 - Administrative (different groups and purposes, grid vs non-grid)

PT WLC Resources

- **Dual CPU machines with 4 cores each, 3 GB/core, Running SL5**
- ► @ NCG-INGRID-PT
 - **IBM and HP blade solutions hosting from 12 to 14 blades**
- @ LIP-Lisbon / @ LIP-Coimbra
 - Mostly discrete but powerful HP Linux boxes

Infrastructure: Computing (II)

IBM LS22

HP BL160 G6

Table 2. Benchmark results for the PT-Tier-2 resources. The reported values represent the average results of several consecutive measurements, and their errors represent the average dispersion of those measurements.

Model	Processor	OS	Arch	HEPSPEC06/Core	SI00/HEPSPEC06
IBM LS22	AMD Opteron 2356	SL5	X86_64	6.83 ± 0.01	208
IBM HS21	Intel Xeon E5420	SL5	X86_64	8.20 ± 0.03	244
HP DL160 G6	Intel Xeon E5540	SL5	X86_64	13.14 ± 0.02	186
HP BL460c G6	Intel Xeon X5550	SL5	X86_64	14.15 ± 0.04	189
HP DL160 G5	Intel Xeon E5472	SL5	X86_64	10.21 ± 0.02	227
$\rm HP\ DL160\ G5$	Intel Xeon E5472	SL4	i386	9.49 ± 0.04	248

Long inactivity periods are bad for distributed computing infrastructures

Both ATLAS and CMS exercise their infrastructures

- Check the readiness status of the participating sites
- Spot operational problems
- Maintaining the data flows active and prepared for massive data distribution

Evaluation techniques to check the fulfillment of WLCG MoU

Sites must maintain a sustainable success rate

CMS PT Tier-2 Performance

Computing

ATLAS PT Tier-2 Performance

High success rate

- < 1% for NCG-INGRID-PT and LIP-Lisbon
- Higher than average for LIP-Coimbra but not site fault

Event Rate

- 0.5 Hz, 0.6 Hz and 0.6 Hz for NCG-INGRID-PT, LIP-Lisbon and LIP-Coimbra
- 0.5 Hz as average for all Iberian ATLAS sites

Efficiency

- 26.0%, 32.6% and 25.9% for NCG-INGRID-PT, LIP-Lisbon and LIP-Coimbra
- 28.0% as average for all Iberian ATLAS sites

WLCG PT Tier-2 Performance

Operational problems (I)

Communication issues

- Not easy to pass information to the experiment people
- Opposite flow from experiments to Tier-2 is always delivered with extreme urgency and deadlines that have to be adhered to

Information restriction

CMS restricts technical information to VO members

Experiments tools and framework

- Debug information not always available
- When available, the debug information isn't clear enough to someone that is not familiar with the application or is not a VO member

Operational problems (II)

Hardcoded and static framework

- New resources are not automatically recognized
 - The (ATLAS) experiment framework do not use the IS
- Not flexible software conceptualization and architecture
 - We found (the hard way) that a physical NFS mount point was hardcoded in hundreds of places for ATLAS software

Contradictory demands

- Immediate migration to SL5
- Local users still want SL4
- Manage two sets of resources
 - Load increase

LIP Computing Team

